APPLIED EPIDEMIOLOGY AND BIOSTATISTICS
Although the information about medication given in this book has been carefully checked, the author and publisher accept no liability for the accuracy of this information. In every individual case the user must check such information by consulting the relevant literature.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the Italian Copyright Law in its current version, and permission for use must always be obtained from SEEEd Medical Publishers srl. Violations are liable to prosecution under the Italian Copyright Law.
5. Cohort Studies.. 67
 5.1. What is a cohort study?.. 67
 5.2. Why do we need a cohort study? ... 68
 5.3. The eligibility criteria .. 68
 5.4. The structure of a cohort study ... 69
 5.5. Censoring.. 70
 5.6. The statistical analysis in a cohort study .. 70
 5.7. Practical examples .. 71
References.. 84

6. Experimental Studies... 87
 6.1. What is a sample experimental study? .. 87
 6.2. Why do we need an experimental study? .. 88
 6.3. The eligibility criteria .. 88
 6.4. The randomisation process .. 89
 6.5. The blinding.. 90
 6.6. The structure of an experimental study .. 90
 6.7. The statistical analysis in an experimental study ... 94
 6.8. Practical examples .. 95
References.. 100

7. Temporal Trend Analysis.. 101
 7.1. Introduction .. 101
 7.2. Basic principles of temporal trend analysis .. 105
 7.3. Practical examples .. 112
References.. 116

8. The Surveillance of Sexually Transmitted Infections: the Theory and the Practice 119
 8.1. Introduction .. 119
 8.2. Surveillance of sexually transmitted infections in the third millennium 120
 8.3. Attributes of a STI surveillance system .. 122
 8.4. Universal versus sentinel surveillance systems .. 127
 8.5. How to perform STI surveillance ... 128
 8.6. Data management and analysis ... 134
 8.7. Practical exercises for analysing a dataset of STIs ... 135
References.. 156

9. Systematic Reviews and Meta-Analysis of Clinical Trials...................................... 159
 9.1. What is a systematic review? What is a meta-analysis? .. 159
 9.2. Why do we need systematic reviews and meta-analyses? 160
 9.3. Practical steps of a meta-analysis ... 165
9.4. A practical example of a meta-analysis of RCTs................................. 174
References.. 202

10. Meta-Analysis of Observational Studies... 207
10.1. Introduction.. 207
10.2. Practical example.. 209
10.3. Worked examples... 211
References.. 230

11. Genetic Epidemiology.. 231
11.1. Key concepts of genetic epidemiology... 231
11.2. A practical example: the “candidate gene approach”............... 234
References.. 246

12. Analysis of Cost Data Using Bootstrap Technique............................ 249
12.1. Introduction.. 249
12.2. Basic principles of the bootstrap method.................................... 250
12.3. Bootstrap standard normal confidence interval......................... 251
12.4. Percentile method confidence interval....................................... 251
12.5. Bias corrected and accelerated (BCa) confidence interval......... 252
12.6. Application to example... 252
References.. 259

13. Sensitivity, Specificity, and ROC Curves ... 261
13.1. Study introduction... 261
13.2. Sensitivity, specificity, and predictive value............................... 262
13.3. Basic principles of ROC curves.. 264
13.4. Use of ROC analysis for comparison... 273
References.. 277

14. Measures of Central Tendency and Dispersion................................ 279
14.1. Introduction.. 279
14.2. Measures of central tendency... 279
14.3. Measures of dispersion... 282
14.4. Practical exercise... 286
References.. 288

15. Sample Size Calculations... 289
15.1. What is a sample size and why do we need a sample?............. 289
15.2. Steps of a sample size calculation... 290
References.. 302

16. Representation of Data.. 303
16.1. Introduction.. 303
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.2. Representation of qualitative variables</td>
<td>304</td>
</tr>
<tr>
<td>16.3. Representation of quantitative variables</td>
<td>314</td>
</tr>
<tr>
<td>References</td>
<td>324</td>
</tr>
<tr>
<td>17. Running Multiple Regression With Quantitative and Qualitative</td>
<td>325</td>
</tr>
<tr>
<td>Variables With R</td>
<td></td>
</tr>
<tr>
<td>17.1. Introduction</td>
<td>325</td>
</tr>
<tr>
<td>17.2. The regression model with quantitative and qualitative variables</td>
<td>326</td>
</tr>
<tr>
<td>17.3. Practical example: multiple regression with 2 qualitative variables</td>
<td>331</td>
</tr>
<tr>
<td>References</td>
<td>347</td>
</tr>
<tr>
<td>18. Methods for Assessing Normality of Quantitative Variables</td>
<td>349</td>
</tr>
<tr>
<td>18.1. Introduction</td>
<td>349</td>
</tr>
<tr>
<td>18.2. Definition of normality</td>
<td>349</td>
</tr>
<tr>
<td>18.3. Parametric and nonparametric statistics</td>
<td>351</td>
</tr>
<tr>
<td>18.4. How to verify normality of data</td>
<td>351</td>
</tr>
<tr>
<td>18.5. Practical examples</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td>359</td>
</tr>
<tr>
<td>19. Quality of Life Evaluation</td>
<td>361</td>
</tr>
<tr>
<td>19.1. Quality of life in the general population</td>
<td>361</td>
</tr>
<tr>
<td>19.2. Quality of life in the clinical setting</td>
<td>372</td>
</tr>
<tr>
<td>References</td>
<td>380</td>
</tr>
<tr>
<td>Appendix. Algorithm to create the SF-36 scales</td>
<td>382</td>
</tr>
<tr>
<td>20. Disability Adjusted Life Years (DALY) Summary Measure of</td>
<td>389</td>
</tr>
<tr>
<td>Population Health</td>
<td></td>
</tr>
<tr>
<td>20.1. Introduction</td>
<td>389</td>
</tr>
<tr>
<td>20.2. Disability adjusted life year (DALY): the concept and its uses</td>
<td>390</td>
</tr>
<tr>
<td>20.3. Method for DALY estimation used in the serbian burden of disease study</td>
<td>390</td>
</tr>
<tr>
<td>20.4. Practical example: calculation of DALY for colorectal cancer, Serbia, 2000</td>
<td>395</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>397</td>
</tr>
<tr>
<td>References</td>
<td>398</td>
</tr>
</tbody>
</table>
When this book was conceived, as a discussion among members of the section of Public Health Epidemiology of the European Public Health Associations (EUPHA), the main idea was to describe not only theory, but above all how to use the available software for epidemiologic and statistical data analysis.

In the era of Evidence Based Medicine, health professionals are required to fully understand design, analysis and interpretation of the results of research. Furthermore, they should be able to assess the needs of their communities and respond accordingly. To achieve these goals, one needs to be familiar with the basic concepts of epidemiology and biostatistics.

But epidemiology is more than “the study of.” Its application and practice are essential to address public health issues.

So, the purpose of the book is to give the reader either the theory concerning specific aspects of technical disciplines as epidemiology and biostatistics, and in the mean time to give the opportunity of replicating under guidance the analysis done by each chapter’s author and already published in a given research article. The idea is to use the available software for epidemiologic and statistical data analysis, that each reader can download freely from the Internet.

Concerning the way in which the purpose of the book is to be achieved, it is important to underline that each chapter will present one or more specific examples on how to perform an epidemiological or statistical data analysis. The single chapter will give the reader the possibility of conducting an epidemiological or a statistical analysis, using a step by step approach. In other words, the reader will be able to do the analysis following the detailed description of the commands to use and the figures that represent a picture of the software command and/or output.
Why do we believe the book is needed?

The answer is mainly of technical reason. Up to now, many books concerning epidemiology and biostatistics are available, but no one could give practical examples using different freely available software. This book will use software such as Epi Info, Episheet, Simcalc, StatCalc, RevMan, that are downloadable from the web, and could cover most arguments concerning the two disciplines. In selected cases, we will make examples using commercial statistical software, such as Stata and SPSS.

The reader will be interested in this book because he/she will find a resolution of an epidemiological/biostatistical problem with practical example and a guide to use the software in a very detailed and efficient way.

Have you ever been interested in performing an epidemiological data analysis, but you thought to be not able to?

Have you ever been in trouble in making a statistical analysis, because you considered statistics a matter of statisticians only?

Applied Epidemiology and Biostatistics is the answer to you.

Questions as following will find an answer:

- How to perform a multiple logistic regression using your own data?
- How to calculate the 95% confidence intervals of that odds ratio?
- How to perform a meta-analysis of papers of your interest?
- How to make graphs for your report?
- How to make a ROC curve or control for a possible confounding?
- How to calculate the sample size needed for the clinical trial?

This is a manual designed for using software, that are freely downloadable from the web, and could cover most arguments concerning the two disciplines, epidemiology and biostatistics. In selected cases, examples will use commercial statistical packages.

Who is the best reader of this book?

Considering that epidemiology can be seen as the study of factors affecting the health and illness of a certain population, and the Biostatistics is one of the main pillar of the research, in our intention this manual will have as principle possible targets the following:

- Public Health practitioners (professionals, researchers).
- Clinicians (researchers).
• Health Managers (professionals, researchers).
• Teachers of Epidemiology.
• Teachers of Biostatistics.

Finally, I would like to thank all the contributors to this manual. Without their support and suggestions, it would have been impossible to achieve this goal. Now, do you want to start? Let’s make Epidemiology and Biostatistics together!

Giuseppe La Torre

Instructions for Downloading

To download the software and databases described in this book, you need to:
• access the website http://download.edizioniseed.it
• access the “Download area” and
• type the code -------